The Lagrange Interpolation Formula and Stirling Numbers
نویسنده
چکیده
and the formulas may be used to extend the definition of Si(w, ¿) and S2(n, k) for arbitrary real n. In a previous paper [2] the writer has proved several apparently new formulas relating the two kinds of Stirling numbers to each other. Carlitz [l] has generalized these results in part as follows. Instead of considering the polynomial B['\ let fk(z) denote an arbitrary polynomial in z of degree ¿, that is
منابع مشابه
A Newton Interpolation Approach to Generalized Stirling Numbers
We employ the generalized factorials to define a Stirling-type pair {s n, k;α,β, r , S n, k;α,β, r } which unifies various Stirling-type numbers investigated by previous authors. We make use of the Newton interpolation and divided differences to obtain some basic properties of the generalized Stirling numbers including the recurrence relation, explicit expression, and generating function. The g...
متن کاملSharing several secrets based on Lagrange's interpolation formula and Cipher feedback mode
In a multi-secret sharing scheme, several secret values are distributed among a set of n participants.In 2000 Chien et al.'s proposed a (t; n) multi-secret sharing scheme. Many storages and publicvalues required in Chien's scheme. Motivated by these concerns, some new (t; n) multi-secret sharingschemes are proposed in this paper based on the Lagrange interpolation formula for polynomials andcip...
متن کاملThe numerical stability of barycentric Lagrange interpolation
The Lagrange representation of the interpolating polynomial can be rewritten in two more computationally attractive forms: a modified Lagrange form and a barycentric form. We give an error analysis of the evaluation of the interpolating polynomial using these two forms. The modified Lagrange formula is shown to be backward stable. The barycentric formula has a less favourable error analysis, bu...
متن کاملGeneralized q-Stirling Numbers and Their Interpolation Functions
In this paper, we define the generating functions for the generalized q-Stirling numbers of the second kind. By applying Mellin transform to these functions, we construct interpolation functions of these numbers at negative integers. We also derive some identities and relations related to q-Bernoulli numbers and polynomials and q-Stirling numbers of the second kind.
متن کاملOn Multivariate Lagrange Interpolation
Lagrange interpolation by polynomials in several variables is studied through a finite difference approach. We establish an interpolation formula analogous to that of Newton and a remainder formula, both of them in terms of finite differences. We prove that the finite difference admits an integral representation involving simplex spline functions. In particular, this provides a remainder formul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010